Delivery of beta-galactosidase to mouse brain via the blood-brain barrier transferrin receptor.

نویسندگان

  • Yun Zhang
  • William M Pardridge
چکیده

Enzyme replacement therapy of lysosomal storage disorders is complicated by the lack of enzyme transport across the blood-brain barrier (BBB). The present studies evaluate the delivery of a model enzyme across the BBB following enzyme conjugation to a BBB receptor-specific monoclonal antibody (mAb). Bacterial beta-galactosidase (116 kDa) was conjugated to the rat 8D3 mAb to the rat transferrin receptor (TfR) via a streptavidin-biotin linkage. The unconjugated beta-galactosidase or the beta-galactosidase-8D3 conjugate was injected intravenously in adult mice, and enzyme activity was measured at 1 and 4 h in brain and peripheral organs (liver, spleen, kidney, and heart). Unconjugated beta-galactosidase was rapidly removed from the blood compartment owing to avid uptake by liver and spleen. There was minimal uptake of the unconjugated beta-galactosidase by brain. Following conjugation of the enzyme to the 8D3 TfRmAb, there was a 10-fold increase in brain uptake of the enzyme based on measurement of enzyme activity. Histochemistry of brain showed localization of the enzyme in the intraendothelial compartment of brain following intravenous injection of the enzyme-mAb conjugate. The capillary depletion technique showed that more than 90% of the enzyme-8D3 conjugate that entered into the endothelial compartment of brain passed through the BBB to enter brain parenchyma. In conclusion, high molecular weight enzymes, such as bacterial beta-galactosidase, can be conjugated to BBB targeting antibodies for effective delivery across the BBB in vivo. Fusion proteins comprised of BBB targeting antibodies and recombinant enzymes could be therapeutic in the treatment of the brain in human lysosomal storage disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive gene targeting to the brain.

Gene therapy of the brain is hindered by the presence of the blood-brain barrier (BBB), which prevents the brain uptake of bloodborne gene formulations. Exogenous genes have been expressed in the brain after invasive routes of administration, such as craniotomy or intracarotid arterial infusion of noxious agents causing BBB disruption. The present studies describe the expression of an exogenous...

متن کامل

Delivery of fungal beta-galactosidase to rat brain by means of liposomes.

A significant increase in beta-galactosidase activity was observed in the brain of rats 1 hr after an intravenous injection of liposomes containing beta-galactosidase purified from Aspergillus oryzae. The increased activity was proved to have features of the fungal enzyme by differentiating it from rat's native beta-galactosidase in both heat stability and immunochemical studies. Blood content ...

متن کامل

Brain-specific expression of an exogenous gene after i.v. administration.

The treatment of brain diseases with gene therapy requires the gene to be expressed throughout the central nervous system, and this is possible by using gene targeting technology that delivers the gene across the blood-brain barrier after i.v. administration of a nonviral formulation of the gene. The plasmid DNA is targeted to brain with pegylated immunoliposomes (PILs) using a targeting ligand...

متن کامل

Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway.

The membrane transferrin receptor-mediated endocytosis or internalization of the complex of transferrin bound iron and the transferrin receptor is the major route of cellular iron uptake. This efficient cellular uptake pathway has been exploited for the site-specific delivery not only of anticancer drugs and proteins, but also of therapeutic genes into proliferating malignant cells that overexp...

متن کامل

A Carrier for Non-Covalent Delivery of Functional Beta-Galactosidase and Antibodies against Amyloid Plaques and IgM to the Brain

BACKGROUND Therapeutic intervention of numerous brain-associated disorders currently remains unrealized due to serious limitations imposed by the blood-brain-barrier (BBB). The BBB generally allows transport of small molecules, typically <600 daltons with high octanol/water partition coefficients, but denies passage to most larger molecules. However, some receptors present on the BBB allow pass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 313 3  شماره 

صفحات  -

تاریخ انتشار 2005